
ACIDS & BASES - IONIC EQUILIBRIA

THE STRENGTH OF ACIDS

Strong acids completely dissociate (split up) into ions in aqueous solution								
	e.g. $HCl \longrightarrow H^{+}(aq) + Cl^{-}(aq)$ MONOPROTIC 1 replaceable H HNO ₃ $\longrightarrow H^{+}(aq) + NO_{3}^{-}(aq)$							
	H_2SO_4 —> $2H^+(aq)$ + $SO_4^{2-}(aq)$ DIPROTIC 2 replaceable H's							
Weak acids	partially dissociate into ions in aqueous solution eg ethanoic acid $CH_3COOH \iff CH_3COO^-(aq) + H^+(aq)$							
Theory	When a weak acid dissolves in water an equilibrium is set up $HA(aq) + H_2O(I) \implies A^-(aq) + H_3O^+(aq)$							
	The water is essential as it stabilises the resulting ions. However to make calculations easier the dissociation is usually written in a shorter way $HA(aq) \longrightarrow A^{-}(aq) + H^{+}(aq)$							
	 The weaker the acid the less it dissociates the more the equilibrium lies to the left 							
	The relative strengths of acids can be expressed as K_a or pK_a values (see later).							
	The dissociation constant for weak acid HA is $K_a = [H^+_{(aq)}] [A^{(aq)}]$ mol dm ⁻³ (see later for a fuller discussion) $[HA_{(aq)}]$							
THE STREM	IGTH OF BASES							
Strong	completely dissociate into ions in aqueous solution NaOH ——> Na ⁺ + OH ⁻							
Weak	partially react to give ions in aqueous solution							
	When a weak base dissolves in water an equilibrium is set up $NH_3(aq) + H_2O(I) \iff NH_4^+(aq) + OH^-(aq)$							
	as in the case of acids it is more simply written NH_3 (aq) + $H^+(aq) \implies NH_4^+(aq)$							
	The weaker the base • the less it dissociates • the more the equilibrium lies to the left							

Acid-base

HYDROGEN ION CONCENTRATION

Introduction • hydrogen ion concentration determines the acidity of a solution

- hydroxide ion concentration determines the alkalinity
- for strong acids and bases the concentration of ions is very much larger than their weaker counterparts which only partially dissociate.

рН	hydrogen ion concentration can be converted to pH	pH = - log ₁₀ [H ⁺ (aq)]
	to convert pH into hydrogen ion concentration	[H ⁺ (aq)] = antilog (-pH) or =10 ^{-pH}
рОН	An equivalent calculation for bases converts the hydroxide ion concentration to pOH	pOH = - log₁₀ [OH ⁻ (aq)]
	in the above, [] represents the concentration in	n mol dm ⁻³

Ionic Product of Water... K_w

Formula Despite being covalent, water conducts electricity to a very small extent.

It is due to the slight ionisation H_2C	$\mathbf{D}(\mathbf{I})$ + $\mathbf{H}_2\mathbf{O}(\mathbf{I})$ \longrightarrow $\mathbf{H}_3\mathbf{O}^+(\mathbf{aq})$ + $\mathbf{OH}^-(\mathbf{aq})$
or	$H_2O(I) \longrightarrow H^+(aq) + OH^-(aq)$
Applying the Equilibrium Law	$K_{c} = [H^{+}(aq)] [OH^{-}(aq)]$ $\underline{[H_{2}O(I)]}$
[] is the equilibrium concentration in	
As the dissociation is small , the wate is very large compared with the dissoc any changes to its value are insignifica its concentration can be regarded as c	ciated ions and ant;
This "constant" is combined with (K_c) to get a new constant (K_w) .	K _w = [H ⁺ (aq)] [OH ⁻ (aq)] mol ² dm ⁻⁶ = 10 ⁻¹⁴ mol ² dm ⁻⁶ (at 25°C)

Variation The value of **K**_w varies with temperature because it is based on an equilibrium.

Temperature / °C	0	20	25	30	60
K _w / 10 ⁻¹⁴ mol ² dm ⁻⁶	0.11	0.68	1.0	1.47	5.6

What does the trend tell you about the sign of ΔH for the dissociation of water?

3

The relationship between pH and pOH

Because H ⁺ and OH ⁻ ions are produced in equal amounts when water dissociates their concentrations will be the same.	$[H^+] = [OH^-] = 10^{-7} \text{ mol dm}^{-3}$
 take the equation for K_w 	$[H^+][OH^-] = 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$
 take logs of both sides 	log[H ⁺] + log[OH [−]] = -14
 multiply by minus 	- log[H⁺] - log[OH⁻] = 14
 change to pH and pOH 	pH + pOH = 14 (at 25°C)

N.B. As they are based on the position of equilibrium and that varies with temperature, the above values are only true if the temperature is 25°C (298K)

Neutral solutions are best described as those where $[H^+] = [OH^-]$ Therefore a neutral solution is pH 7 only at a temperature of 25°C (298K)

The value of K_w is constant for any aqueous solution at the stated temperature

[H ⁺]	1	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁴	10 ⁻⁵	10 ⁻⁶	10 ⁷	10 ⁻⁸	10 ⁻⁹	10 ⁻¹⁰	10 ⁻¹¹	10 ⁻¹²	10 ⁻¹³	10 ⁻¹⁴
[OH ⁻]	10 ⁻¹	⁴ 10 ⁻¹³	³ 10 ⁻¹²	2 - 11 10	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴	10 ⁻³	10 ⁻²	10 ⁻¹	1
рН	0	1	2 ➡	3	4	5	6	7	8	9	10	11	12	13	14
		rongly cidic	/		veakly acidic		n	eutral			/eakly Ikaline			stronç alkalir	

<i>Q.3</i>	Convert the following pH values to $[H^+]$;	13	7.5 3.21	- 0.6993
	Convert the following $[H^+]$ values to pH $$;	0.01	2.5 x 10-4	1.1 x 10 ⁻¹³

CALCULATING THE pH AND pOH OF STRONG ACIDS AND BASES

- This is relatively easy because the species have completely dissociated
- Only need to know the original concentration of the acid or base

Example 1 Calculate the pH of 0.1M hydrochloric acid.

> HCl (strong monoprotic acid) is fully dissociated. HCl \longrightarrow H⁺(aq) + Cl⁻(aq) The [H⁺] is therefore the same as the original concentration of HCl i.e. 0.1M.

$$pH = -\log_{10} [H^+] = -\log_{10} (10^{-1}) = 1$$
 ANS. 1

Calculate the pH of 0.001M sodium hydroxide. Example 2

NaOH (a strong base) is fully dissociated. Na⁺OH⁻ \longrightarrow Na⁺(aq) + OH⁻(aq) [OH⁻] is therefore the same as the original concentration of NaOH i.e. 0.001M.

 $pOH = -\log_{10}[OH^{-}] = -\log_{10}(10^{-3}) = 3$ pH = 14 - pOH = 14 - 3 = 11**ANS. 11** and

0.4 Calculate the pH and pOH of the following solutions.

a)	HCl;	0.1M,	0.5M
b)	$H_2SO_4;$	0.1M,	0.5M

- *c) KOH;* 0.1M
- *d*) *NaOH*; *2M*, 0.0005M
- e) The solution remaining when 30 cm^3 of 0.100M NaOH has been added to 20 cm³ of 0.200M HCl
- f) The solution remaining when 24.9 cm^3 of 0.100M NaOH has been added to 25 cm³ of 0.100M HCl

CALCULATING THE pH AND pOH OF WEAK ACIDS AND BASES

- can't be calculated by just knowing the concentration
- need to know... the extent of the ionisation (from K_a) and the original concentration

The dissociation constant for a weak acid (K_a)

A weak monobasic acid (HA) dissociates in water thus. $HA(aq) + H_2O(l) \implies H_3O^+(aq) + A^-(aq)$ Applying the equilibrium law we get $K_c = [H_3O^+(aq)] [A^-(aq)]$ [HA(aq)] [H₂O(aq)] [] is the equilibrium concentration in mol dm^{-3} Assumptions For a weak acid there is little dissociation $[HA(aq)]_{equil} \sim [HA(aq)]_{undisc}$ This assumption becomes less valid for stronger weak acids where there is more dissociation. In dilute solution, the concentration of water is large compared with the dissociated ions and any changes to its value are insignificant; its concentration can be regarded as 'constant'. [H₂O_(l)] is 'constant' Combine this 'constant' with (K_c) $K_a = [H_3O^+(aq)] [A^-(aq)] mol dm^{-3}$ to get a new one (K_a) . [HA(aq)] where $K_a = K_c [H_2 O_{(l)}]$ A simpler way to write it all out is $HA(aq) = H^{+}(aq) + A^{-}(aq)$ mol dm⁻³ The dissociation constant K_a is then $K_a =$ **[H**⁺(aq) **] [A**⁻(aq) **]** [HA(aq)] The weaker the acid • the less it dissociates the fewer ions you get the smaller K_a

	The stronger the acid • the more the equ • the larger K _a	ilibrium lies to the right			
рКа	• very weak acids have very small K_a values • it is easier to compare the strength as p K_a values				
	The conversion is carried out thus	pKa = - log ₁₀ K _a			
	To convert pK_a into K_a	K _a = antilog (-pK _a) or 10 ^{-Ka}			

<i>Q.5</i>	Write out expressions for K_a for the following weak acids							
	HF	HCN						
	СН₃СООН	C_6H_5COOH						

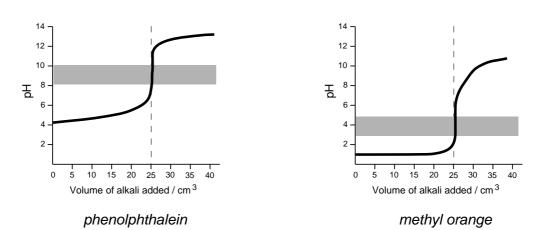
Calculating the pH of a weak acid

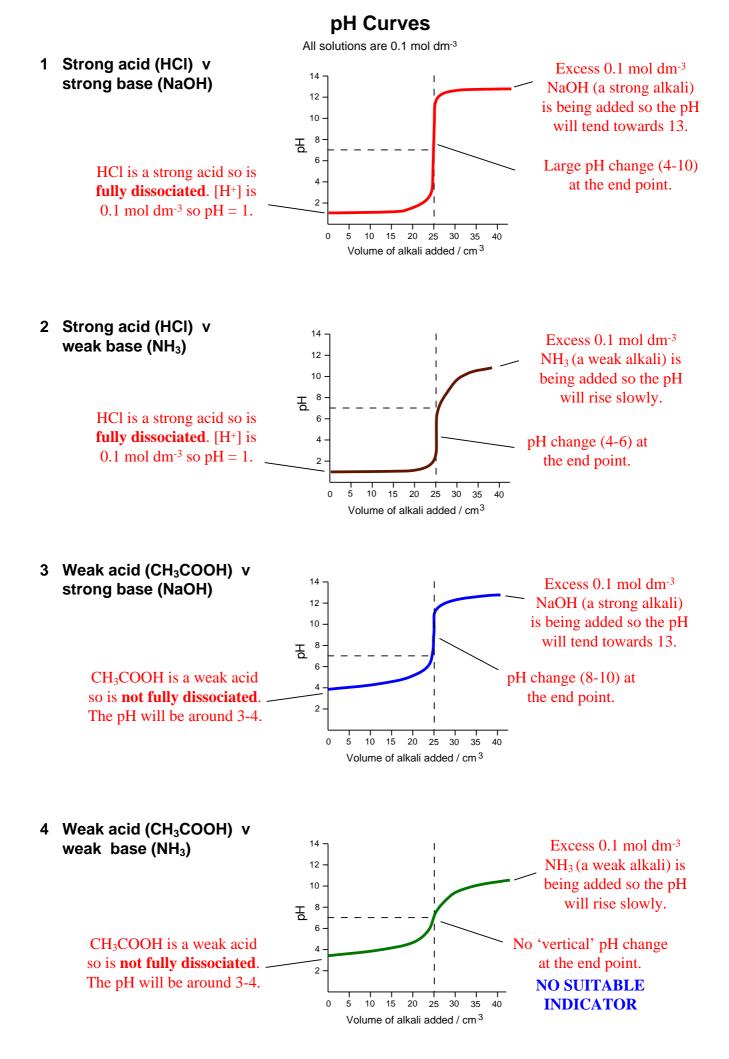
Theory	Weak monobasic acid (HA) dissociates in	water HA(aq) = H ⁺ (aq) + A ⁻ (aq)
	the dissociation constant (K_a) is	$K_a = [H^+(aq)] [A^-(aq)]$ mol dm ⁻³ [HA(aq)]
Assumptions	The equation shows that, on dissociation, ions are formed in equimolar amounts.	$\begin{bmatrix} H^{+}(aq) \end{bmatrix} = \begin{bmatrix} A^{-}(aq) \end{bmatrix}$ $\therefore K_{a} = \begin{bmatrix} H^{+}(aq) \end{bmatrix} \begin{bmatrix} H^{+}(aq) \end{bmatrix}$ $\boxed{\begin{bmatrix} HA(aq) \end{bmatrix}}$
	The acid is weak, so dissociation is sma The equilibrium concentration of HA can be approximated to be its original value.	n
	the equation can be re-written	$[H^+(aq)]^2 = K_a [HA(aq)]$
	and	$[H^{+}(aq)] = \sqrt{K_a [HA(aq)]}$
	The pH can then be calculated	pH = - log ₁₀ [H ⁺ (aq)]
<i>Q</i> .	<i>6</i> Calculate the pH of the following solutions	of weak acids
	a) 0.1M monobasic (monoprotic) acid (K_a	$= 2 x 10^{-4} mol dm^{-3}$
	b) 0.01M monobasic (monoprotic) acid (Ka	$a_{1} = 7.5 \ x \ 10^{-3} \ mol \ dm^{-3}$

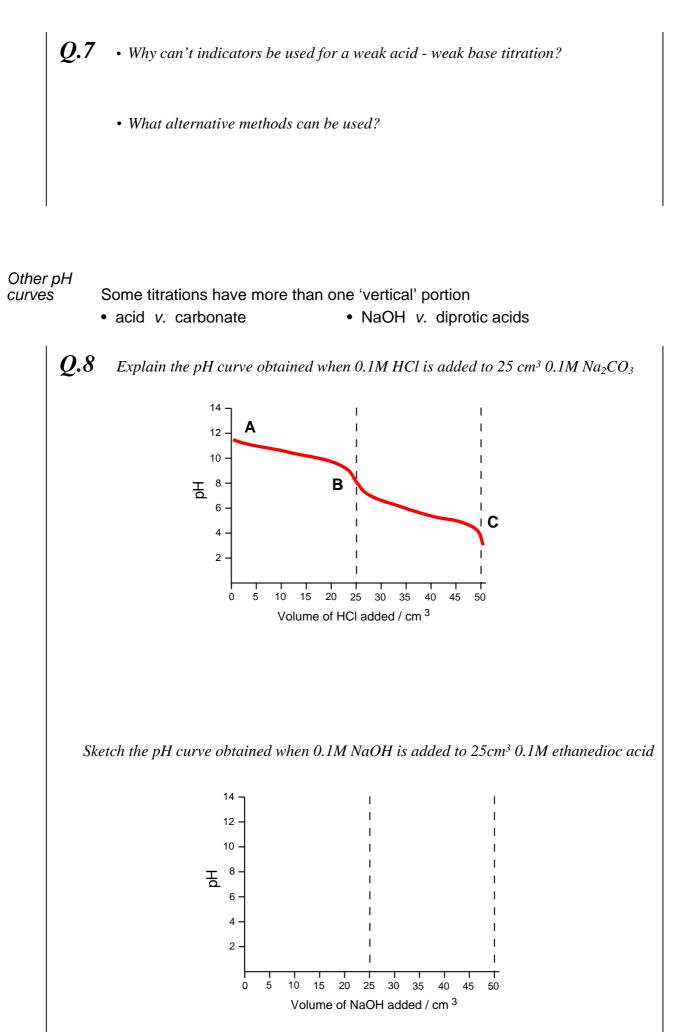
Acid-base

ACID - BASE INDICATORS

General	Many indicators are weak ac partially dissociate in aqueo	HIn(aq) = red		H *(aq) +	In⁻(aq) blue	
	The un-ionised form (HIn) is different colour to the anio		and	K _a =	[H⁺(aq)] [In	¯(aq)]
	Apply Le Chatelier's Principl to predict any colour change				[HIn(aq)]
Example	In acid - increases [H ⁺]	- equilibrium r	noves to the I	eft to	give the re	d form
	In alkali - increases [OH ⁻]	- although OH	- ions don't ar	opear	in the equa	tion


alkali - increases [OH] - although OH ions don't appear in the equation they remove H⁺ ions to form water.


- equilibrium moves to the right giving a blue colour
- Must have an easily observed colour change.
 Must change quickly in the required pH range on addition of 'half' a drop of reagent


	pH () 1	1 2	2 3	β Δ	4 5	56	57	7 8	3 9	91	0 1	1 1	2 1	3 14
examples	Methyl Orange	pink			change					yellow					
	Litmus		re		d			change			blu		le		
	Phenolphthalein			colourless						change			re	d	

A suitable indicator must... change over the "vertical" section of the curve where there is a large change in pH for the addition of a very small volume.

The indicator used depends on the pH changes around the end point - the indicator must change during the 'vertical' portion of the curve -

